
International Journal of Theoretical Physics, Vol. 9, No. 3 (1974), pp. 157-I 65 

The Contribution of the C-Field to the Action Functional 

J. M. HOBBS 

Department of Mathematics attd Computer Studies, SunderIand Polktcchnic 

ReceiL'ed: 27 February 1973 

Abstract 

It is shown that the action of the usual field theory requires the inclusion of two terms in 
order to be equivalent, in the macroscopic case, to the action proposed by Hoyle & 
Narlikar (1964c). These actions correspond only to a modified form of Maxwell's 
equations, which, in consequence, lose their property of conformal invariance. It is also 
demonstrated how the C-field and electromagnetic field can be brought into unison by 
an appropriate re-definition of the vector potential. Both field theories can thus be 
described in terms of one vector Green's function. 

1. Intro&tction 

In two recent papers Hoyle & Narlikar (1964a, b) have described a 
method of  overcoming singularities in the gravitational equations. The 
first paper (1964a) showed that the presence of  a C-field in these equations, 
satisfying the source equation, actually prevents singularities from occur- 
ring. Whilst, in their second paper (1964b), they proceeded to construct a 
C-field, defined in terms of  a scalar Green's function, which satisfied the 
source equation identically and was therefore of  the type required to 
overcome the singularity problem. In a later paper (1964c) the above 
authors found that, by defining the C-field and the vector potential in terms 
of  specific Green's functions, they were able to simplify the usual form of 
action functional. This was due to the fact that, by choosing the Green's 
functions correctly, they could reduce both Maxwell's equations and the 
source equation to identities. This means that the only equations which 
actually emerge from their action functional are those for the gravitational 
field. These were found to contain additional terms which could not be 
evolved from the action of  the usual field theory. 

In the work that follows we shall show that these additional terms arise 
because the two actions we are considering are mutually incompatible. In 
fact, in order to obtain agreement with the simplified action it is necessary 
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to include two extra terms into the action of the usual field theory. These 
are found to account for the additional terms appearing in the energy- 
momentum tensor of Hoyle and Narlikar. Two very important points 
which emerge from this work are that the two actions correspond only to 
a modified form of Maxwell's equations and that the modified Maxwellian 
equations are no longer conformally invariant. This additional contribution 
of the creation field to the current density does mean, however, that the 
C-field can be absorbed into electromagnetic iheory by an appropriate 
re-definition of the vector potential. In consequence, only one Green's 
function is required in the action in order to describe both the electro- 
magnetic field and the C-field. 

2. The Two Actions 

Throughout this work we shall comply with the notation and terminology 
of Hoyle & Narlikar (t964c). The world lines of particles will be labelled 
a, b, etc., and a typical point on world line 'a' will be denoted by A. The 
indices of the various tensors associated with A will carry a suffix A, for 
example ia, ka. The coordinates of A are a I~ a~d the proper time at A will 
be denoted by 'a" with 

da 2 = gl,~k~ da i~ da k~ (2.1) 

Now consider the world line 'a" to be a segment with ends at the points AI, 
A2 and with At at the later time. We shall define the contribution of the 
world line 'a' to the total creation field by 

c(o)(x) = f - ' { C ( x ,  A=) - C(x, A,)} 
A2 

= f - l  f G.L~ d l" da (2.2) 
• 41 

where (7 is the scalar Green's function which is a solution of the wave 
equation 

g, ~k~ G(A, B ).~A~ , = _g-~:z 6(~)( A, B) (2.3) 

and f is a coupling constant. Dots over the coordinates denote absolute 
covariant differentiation with respect to the proper time, 6(~)(A,B) is the 
four-dimensional Dirac delta function and ~ denotes minus the determinant 
of theparallel propagator'. The total creation field at X due to all world 
lines is 

C(X) = ~ C(°)(X) (2.4) 
a 

Our next problem is to introduce the vector potential at the point X due 
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to a typical world line 'a'. This is achieved by forming Maxwell's equations 
from the action ofthe usual field theory, that is from 

L 1 = l--67.r.G j Rx/(-g)d'*x- ~ m. f da 

16nlf F"F'"V(-g)db~- ~ eo f A, da' 

-½f  f C.,C.'v'(-g)d'~x + ~ f C.,da' (2.5) 

where A~ is the electromagnetic 4-potential. An independent variation of 
the A~, keeping the geometry and C fixed, leads to Maxwelrs equations in 
the form 

FIJ.j = 4nj I (2.6) 

where the field strengths are 

FU = AS.L - Ai j  (2.7) 

a n d f  is the charge-current four vector given by 

jr= ~ ea f ~-t/2fi('t'(A,X)~,",~d"~da (2.8) 

On the other hand the action used by Hoyle & Narlikar (1964c) takes the 
simplified forms 

.4 ="I6~G R~/(-g)d4 x - ~ m. da 

(2.9) 

- 16riG Rv~(-g) d4 x - ~ m. da 
a 

+:-' fj'%,. .o'.db'. (2.lo) 

where (7~AI J is a vector Green's function which we shall define later using 
Maxwelrs equations. In (2.9) and (2.10) the fields are not given independent 
degrees of freedom, since they re interrelated through the geometry of the 
system. This means that only the gravitational equations can emerge from 
the action functional. However, Hoyle and Narlikar assert that these 
actions still remain equivalent to the action (2.5), of the usual field theory, 
by virtue of the fact that, due to the choice of vector and scalar Green's 
functions, both Maxwell's equations and the source equation for the current 
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density are satisfied identically. Let us now investigate this statement to see 
whether this can indeed be the case. 

Substituting equation (2.7) into equation (2.6) we see that Maxwell's 
equations for the usual field theory become 

gJ~ ks AfO) ,.s:x _ g, t,'A~a)s,.s,k~ + R l t ,  AC~)k, = _ 47rjc~)l, (2.11) 

where A~),~ and j~o),~ represent the contributions of  the world line "a" to 
the total vector potential and current four vector respectively. In solving 
equation (2.11) we shall not restrict ourselves to a particular gauge, but 
instead define an arbitrary gauge by 

AO°k~,.t,, = 4rceo f A.la dr'4 da (2.12) 

where A(X, A) is an arbitrary bi-scalar. 
We next define a solution of  equation (2.1 I) for the vector potential in 

terms of  the vector Green's function by the relation 

A°')k, = 4neo f (Tk,, r a dr'4 da (2.13) 

and thus assert that the vector Green's function satisfies the inhomogeneous 
wave equation 

gS , ' - (7 , , ,~ j , , , -  a.,;,., + R,,,"(Tk,,:, = -g- ' /z~, , , , ,  f ' " (X ,A)  (2.14) 

There exists an extremely important relation between the scalar and vector 
Green's functions which can be obtained by using the identity 

(~-~/z ~,~,, ~"~(X', A)).,, = -(#-~:-" ~"~(.t', a)).,., (2.15) 

and taking the divergence of  (2.14). Taking equation (2.3) into account, 
we find 

- A.'~,~ ,~ + (R%. CTJ-,~).~. 

= ga'J~(fTk*la.k, -- A.ta).s,~,, (2.16) 

Because we are considering broken world lines, it could be the case that we 
require a general solution to equation (2. ! 6) in order to satisfy the boundary 
conditions at the end points of the world lines. We therefore write the 
general solution to (2.16) as 

dk*l.,.k~- A.,., = -d . ,~  + $',, 

here tPi,t is any four vector satisfying 

(2.17) 

gt, j, ~*A.t,:, = 0 (2.18) 
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In order for our theory to be self-consistent we must, of course, check that 
the vector potential, defined by (2.11), satisfies the assumed arbitrary 
gauge given by (2.12). Taking the divergence of (2.13) and using equation 
(2.17) we have 

4neo f A.la da ~A = A <"> i ~  

= 4ne, f d~l~.~ ~ da ~A 

= --4he, f d.ia da tA 

+ 4nea f A.,, da ~A + 4he,, f d/,,~ da ',l (2.19) 
, J  d 

From equation (2.2) we see that the condition for consistency therefore 
becomes 

(2.20) 

since the assumed gauge cancels on both sides of equation (2.19). Com- 
parison of the equations (2.3) and (2.18), which define the functions (TaA 
and ~'lA, clearly shows that equation (2.20) can never hold unless the 
creation field itself vanishes. Our theory is therefore self-inconsistent. 

At this stage it is worth drawing attention to the fact that when summing 
all our equations to obtain the total contributions to the fields and setting 
~kla = 0, it is possible to have 

Y. e. C~"~(X) = 0 (2 .20  
II 

which wilt give a consistent result in (2.19). As pointed out by Hoyle & 
Narlikar (1964b), this could be the case if world lines are correlated in such 
a way that charge is always conserved. If we could restrict our considerations 
to the total fields arising, then the condition (2.21) would produce a con- 
sistent theory. However, this .is virtually impossible since equation (2.21) 
itself requires the introduction of a partial creation field. Our general 
conclusion must therefore be that the action defined by Hoyle and Narlikar 
and given by equations (2.9) and (2.10) does not correspond to the action 
of the usual field theory given in equation (2.5). 

3. The New Action and the Modified Maxwellian Equations 

The question now arises as to what form Maxwell's equations must take 
in order to be consistent with the actions given in (2.9) and (2.10). Consider 
the modified Maxwellian equations 

F~°~I~.:, = 4nj~,~ h _ 4he, f C~"~. a~ (3.1) 
12 
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Introducing the vector potential, equation (3. I) becomes 

g-~,,k,,.~l(")t~,.i~,k~ " -- A(~)k,,.~ t~, + R~k~ AC~)k~, 

= -4rcfl ") ~ + 4rre~ f C(~). i~ (3.2) 

Choosing the gauge condition such that 

A (") k'.k. = -4rre. f C~")(X) (3.3) 

and defining the vector potential by the relation 

A¢#),. = 4~eo f C, . ,  a da'~ (3.4) 

we see, from (3.2), that the vector Green's function satisfies the equation 

ga,,",,G,,.,.j.,, + R,)*G~,~ =-~-'/'-g,., ,~")(X.A) (3.5) 

Using the identity of  equation (2.15) we see from (2.3) and (3.5) that the 
relation between the vector and scalar Green's functions takes the form 

d)'~,(.l, = --G.la (3.6) 

For consistency we once again require that the vector potential defined 
by (3.4) has a gauge given by (3.3). Taking the divergence of (3.4) and using 
(2.2) and (3.6), we have 

--4rteo f C ~") = At~)k~.~ 

= 4rw° f dk'qA.k, da 1"4 

= -4~ze,,'f d.,, da '.( (3.7) 

From the definition of the creation field, equation (2.2), we see that our 
consistency condition is therefore satisfied and leads us to conclude that 
the Hoyle and Narlikar action (2.10) corresponds to the modified 
Maxwellian equations (3. I). 

From (2.2), (2.8), (3.5) and (3.6) it also follows that the source equation 
is unchanged from that of the usual field theory and takes the form 

fC~°) .%.  =jt#)t ' . l ,  (3.8) 

The question now arises as to what the corresponding modification of  the 
action of  the usual field theory must be, in order to produce equations (3.1) 
and (3.8) and therefore be equivalent to the action (2.10). First, from (3.1), 
we see that a C-field-vector potential interaction term must be added to 
(2.5) in order to give the C-field contribution to Maxwell's equations. 
Secondly, since this additional term taken alone will modify the source 
equation, we must add another term depending on the C-field only which 
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will balance this contribution. The action corresponding to (2.10) must 
therefore be 

L =I--6~G1 f Rx/(_g)d.+x - ~m,,,, f d a  

l~rc f F,,.F'm~(-g)d4x- ~. e° f A, da' 

f c, ,c.w(-g)ex + f 

- Y. e,, f f C'°'., A%/(-g)  d ~" x + 2rcf z ~ ~ eo eb ( C '°, C'b'V'(-g) d 4 x 
a * '  a b 

ml 

(3.9) 

An independent variation of the A~'s gives, from the third, fourth and 
seventh terms, Maxwell's equations in the form 

FU.j = 4nil - 4re ~ e~ C(°). ' (3.10) 
¢1 

Variations of  C, keeping the metric and Al constant, gives from the fifth 
and sixth terms the source equation (3.8). The final two terms make no 
contribution to this since they cancel in the following manner: 

f{+ ~. e.fA', + 2r, f'~ ~e.eb2C(b>},C(°'~/(-g)d'x 

=+ f ~. eof {A'.,+ ~ 4rce, C"}'C'°'~/(-g)d'x 
=0 

in virtue of  the relationship of  equation (3.3). 
The only thing we have not yet considered is the contribution of the 

final two terms to the energy-momentum tensor. Varying the metric we 
find that the third and fifth terms contribute an amount 

1 
4-'~ {¼g'k F ' '  F°" - F "  Yk'} - f {C.' C. ~ - ½g,k C.,,, C."} (3.1 I) 

whilst the final two terms contribute 

2 f  ~ e~(C('). ' A k - ½glk Ct,O ,,, A ' )  + 2rc f 2  g 'k ~.. ~ eo eb C oo C (b) (3.12) 
a a b 

Once again taking note of  the relationship 

At.~ = - 4 n f  ~. e, C (*~ (3.13) 
al 
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we see, from (3.11) and (3.12), that the total contribution to the energy- 
momentum tensor can be written as 

T l~ + T i t  - -  r4na-'YJ-F TM F ,is  Fit Fkl} 
- -  ~. J 1.4 lra 5 

e m  C 

- f i e . '  c ;  - ½g'~ c '  c . i }  
+ (4r0-'{-2A' a ' . ;  + gi~.4".rai A' + ½am.ra A'.ig '~} (3.14) 

How does this equation compare with the result obtained by Hoyle and 
Narlikar when varying the action (2. I0)? They obtained the following form 
for the energy-momentum tensor 

Ti~ + Tll, = (4~z)-t ~. ~ {½g~k F(.)l,. FCb)l. ' _ F(~). F(~)t i _ F(b) u F(O) kl} 
e m  C a < b  

_ f ~ ~ {CC,O.~ C(b).~ + C(b).~ C(,o.~ _ glk C(~).l C(b).i } 
a < b  

- (2r0-t Y Y. {:%,t~"" A(~'.zra + A(~)tA(°'.~ra)} 
a < b  

+ (4r0 -~ E Y {g'%'v')ra A~')'.,ra + :I(~)'~ A(°)'.,ra 
a < b  

+ A (°) l.i A ° )  re.m) } ( 3 . 1 5 )  

Clearly.(3.t5) reduces to (3.14) in the smooth fluid approximation. This is 
the final point required for the two theories to be in agreement. We may 
therefore sum up as follows. The action functionals (2.9) and (2.10) 
postulated by Hoyle and Narlikar are equivalent, not to the action (2.5) of 
the usual field theory, but the modified form given by (3.9). These theories 
then give Maxwell's equations in the modified form (3.1), but the source 
equation still retains its usual form (3.8). The extra two terms in (3.9) 
culminate in an additional contribution to the energy-moinentum tensor 
by the amount given, in (3..12). ln.gener~il the modified form of Maxwell's 
equations, given by (3.10), no longer possesses the usual conformal 
invariance property. In order to r~tain this property it is necessary to 
postulate the conservation of charge in the manner of (2.21). This loss of 
conformal invariance, of course, invalidates the use of the flat space vector 
potential in order to determine the field strengths in conformally fiat 
spaces. This could have repercussions, for example in the work of Ho£'arth 
(1962) and Hoyle & Narlikar (1964a), in determining the consistency 
conditions for various eosmologies. Finally we note that, since the 
additional term in Maxwell's equations (3.10) is the derivative of a scalar 
function, it can always be absorbed into a change of  gauge. 

4. The Action for Direct Particle Fields 

If we differentiate the scalar wave equation (2.3), first with respect to the 
field point, then with respect to the particle position, and use the commuta- 
tion properties satisfied by the Ricci tensor, then we can write (2.3) in the 
form 

g$**,d(X,A).,~,as~ + R,~*d(X,  A).k,,,t = --(g-t/26(4~).,,,~ (4.I) 
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Comparison of  (3.5) and (4.1) shows that the wave equations satisfied by 
G,~iA and G.l~lA are identical except for the source terms on the right. We 
can therefore introduce a new Green's function Gt~tA defined by 

d,,la = G,~ a - ).d.,~, a (4.2) 

where 2 is an arbitrary constant. The new Green's function will satisfy the 
equation 

gJ.'.  a , . , , . , . , .  + R, ", G,x, . = _~-~/2~,.,~ 6~,, + 2(g-~:,. tic,,).,.,,, (4.3) 

Our next step is to define a new vector potential for the electromagnetic 
field by the relation 

AC,) = 4nea f d,~ia da~" (4.4) 

Substituting (4.4) into (4.3) and using the definition (2.2), yields Maxwell's 
equations in the form of (3.2). Noting that the gauge associated with (4.4) 
is, by (3.6), 

A'°"L, =4ne , { - fC . , , da ' a+J . f ( g -~z26 'a ' ) . , ada  'a} (4.5) 

and taking the divergence of(4.3), we obtain the source equation (3.8). The 
new vector potential (4.4) therefore satisfies both the modified Maxwellian 
equations and the source equation identically. The parameter 2 in (4.2) 
corresponds to the arbitrariness of  gauge associated with Maxwell's 
equations. 

There is now no need to consider the C-field in our equations since its 
presence is implicit in the new vector potential (4.4). Finally, in view of  
(4.4) the direct particle action (2. I0) can be written in the simpler form 

A =  R~/(-g)  d 4 x -  m~ da 

- ~<~a 4ne~eb ff G,a,,da'adb t" (4.6) 

where the parameter 2 takes the value 

2 = (4he, e~ f ) - t  (4.7) 
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